砕石改良体構築工法による盛土地盤内の排水対策について

Drainage measures in embankments using crushed-stone improvement body

大石新之介*, 酒井俊典**, 田久勉***, 尾鍋哲也*, 濱口幸三* Shinnosuke OHISHI, Toshinori SAKAI, Tsutomu TAKYU, Tetusya ONABE and Kozo HAMAGUCHI

盛土地盤の安定性向上のため,適切な盛土内の排水対策が求められている。現在まで盛土地盤の 排水対策として,水平方向の水抜きボーリングが主な対策として利用されている。しかし,水抜き ボーリングでは盛土内の地下水を的確に捉えることが困難なこともあり,対策効果が十分得られな い場合がある。本研究では,盛土上で大型の施工機械を用いることが困難なことを考慮し,小型地 盤改良機により砕石改良体を連続的に施工した壁を地盤内に構築し,これに排水パイプを連結する ことで地盤内の地下水を効果的に排除し,地下水位を低下させる工法について検討を行った。検討 にあたって,砕石改良体に集められた盛土内の水を排水する水抜きボーリングの施工は,盛土のり 面から砕石改良体底部に向けて施工する場合と,盛土上面から地盤内の砕石改良体を貫きながら下 位にある砂礫層に向けて鉛直に施工する2つのケースについて試験を行った。水位観測孔による盛 土内の長期的な水位変化について検討を行った結果,盛土のり面から砕石改良体に向けた水抜きボ ーリングの場合,排水パイプから確実に排水されるとともに,砕石改良体近傍下流側の水位上昇が 見られなくなった。また,排水パイプを下位の砂礫層に向けて施工を行った場合においても,下流 側の水位上昇を抑える効果が見られた。この結果,本工法により盛土内に存在する地下水の確実な 排除に対し有効に機能することが確認された。

キーワード: 砕石, 排水, 盛土, 水位, 降水量 crushed stone, drainage, embankment, water level, precipitation

1. はじめに

2011年に発生した東日本大震災において仙台北部道路で盛土ののり面崩壊などの被害が報告されている¹⁾。 また,2009年駿河湾を震源とする地震や2016年の熊本 地震,2018年の北海道胆振東部地震による盛土のり面の 崩壊や,2017年の九州北部豪雨,2018年7月の西日本一 帯への豪雨などの豪雨時にも盛土のり面の崩壊事例が報 告されている^{2),3)}。これらの豪雨時あるいは地震時に発生 する盛土崩壊等の要因の一つとして地下水の影響が指摘 されている^{4),5)}。そのため、地震や豪雨の発生頻度が多い 日本において盛土内の地下水を速やかに排水することは、 盛土の安定性向上に非常に重要である。

現在,盛土内の排水対策として,水抜きボーリングや 透水性の高い砕石を用いた砕石竪排水工などが利用され ている。しかし,水抜きボーリングは地盤内の地下水 の流れを推定することが困難なことから,経験的に施工 さることが多く,必ずしも十分な対策効果が得られない 場合がある。そこで,本研究では,砕石改良体を連続的 に施工した壁を盛土内に構築し,これに排水パイプを連

- ** 三重大学生物資源研究科 教授
- *** 株式会社高速道路総合技術研究所

写真-1 小型地盤改良機を用いた施工状況

結することで盛土内の地下水を排除し、地下水位を低下 させる工法について検討を行った。検討にあたって、砕 石改良体に集められた盛土内の水を排水する排水パイプ の施工を、盛土のり面から砕石改良体底部に向けて施工 する場合(case1)と、盛土上面から地盤内の砕石改良体 を貫きながら下位にある層に向けて鉛直に排水パイプを 施工する場合(case2)の2つのケースについて行った^{7,8)}。 また、一般的に盛土上では大型の施工機械を用いること が困難なことを考慮し、写真-1に示す小型地盤改良機を

Onabegumi.Co., Ltd. Prof., Mie University Nippon Expressway Research Institute Co., Ltd

^{*} 株式会社尾鍋組

用いた工法を採用した⁹。本論では、これら2つのケースについて、盛土内に設けた水位観測孔による長期的な水位変化の観測から得られた結果を基に、対策効果の検討を行った。

2. 試験内容

2.1 砕石改良体構築方法

試験に用いた工法は、側面にゴム扉の付いたケーシン グを有するオーガーを使用することを特徴とする(写真 -1)。図-1に砕石改良体の構築方法を示す。施工手順は、 まず地盤改良機を所定の位置に配置し、ケーシングオー ガーによって掘削した後、ケーシングのゴム扉を開けて 砕石投入用のホッパーからケーシング内に砕石を連続的 に投入しながら0.1mの一定層厚でケーシングを引上げ、 それと同時にケーシング先端のスクリューを回転させる ことで投入した砕石を締固めながら砕石改良体を構築す る。

本工法では側面にゴム扉を備えたケーシングオーガー を採用しているため、図-2に示すように砕石改良体をオ ーバーラップして施工が行え、地盤内に連続的な砕石壁 を構築することが可能である。本施工機は幅が約 2m と 小型であり、狭小地での施工が可能となっている。最大 施工深度は地表面から 5m、改良体の直径は 420mm であ り、本試験に使用した砕石の粒径は 20mm~5mm である。

(b) A 断面の断面図(□:水の流れの方向)
 図-4 case1 の施工図^{7加筆}

2.2 試験地の概要

試験施工は、滋賀県湖南市にある㈱高速道路総合技術 研究所の緑化技術センター内の盛土で実施した。試験地 は図-3 のボーリング柱状図が示すように、GL-0~-5m が 粘土質砂礫, GL-5~-8.6m が砂混じり粘土の盛土層であり, その下位が粘土質砂あるいは粘土質砂礫の原地盤となっ ている。試験地の地下水は旧地形境界に沿って上流側か ら下流側へ流れていると考えられる。本試験では, case1 として砕石改良体を盛土のり面と平行に壁状に施工し, その後,盛土のり面から砕石改良体底部に向けて排水パ イプの施工を行った。また, case2 として砕石改良体底部 から地盤内の下位にある粘土質砂礫層に向けて鉛直に排 水パイプの施工を行った。水位の観測は, case1, case2 共 にボーリング調査時の孔底に設置した水位計(東京測器 製 KW-C) により1時間毎の計測を行い,砕石改良体施 工前後の水位変化を比較することで対策効果の検証を行 った。また、試験地に転倒ます式雨量計を設置し、時間 雨量の計測も実施した。

2.3 試験施工 case1

図-4 に試験箇所の施工状況を示す。砕石改良体は, 20mm オーバーラップさせながら千鳥で配置し,延長 18m,深度 5m まで 61 本施工した。また,地表面の仕上 げは地表面から水が流入しないよう 0.5m の深度まで掘 削し,砕石改良体頭部に不織布を敷設した後,現場発生 土を振動コンパクターで締固めて埋戻した(写真-2)。水 抜きボーリングは,写真-3 に示す排水パイプを砕石改良

写真-3 case1 の排水パイプの全景

(b) 断面図(左:AA',右:BB' ⇔:水の流れの方向) 図-5 case2の施工図

体に向けて 2016 年 2 月に 4本 (p-1~4) 施工し, その後 排水効果の確認を行うため 2017 年 6 月に追加で 2本 (p-5,6) の施工を行った。p-1~4 は, 砕石改良体下端に挿入 した先端から 1m の区間のみストレーナーとした。一方, p-5,6 は全長にわたってストレーナーとした。なお, 排水 パイプは硬質塩化ビニル管 (VP40)を使用し, 延長 15~16m, 仰角 5%で配置した。また, 砕石改良体の上流 側に水位観測孔 a-1, 下流側に水位観測孔 a-2, 離れたの り面に a-3 を設置した。図-4(b)に試験施工箇所の A 断面 を示す。

2.4 試験施工 case2

図-5 に試験箇所の施工状況を示す。現地では、2018年 3月に砕石改良体を1.4m×3.0mの範囲に23本、深度5m まで施工した。また、砕石改良体は70mmオーバーラッ プさせながら千鳥で配置した。排水パイプの施工にあた

(a) 施工機
 (b) 施工完了状況
 写真-4 case2 の施工状況

表-1 現場透水試験結果

対象	深度(m)	透水係数(cm/sec)
盛土	3.0~3.5	8.37×10 ⁻⁷
原地盤	10.5~11.0	1.32×10^{-5}

っては、改良体を構築後、施工機のアタッチメントを交換して行った(写真-4(a))。排水パイプの施工は、①先端 に接続の解除が可能なキャップの付いた口径 114mm の 掘削用鋼管をセットし、②排水目標深度まで正回転で掘 削を行い、③目標深度到達後に逆回転させることで先端 キャップの接続を解除した後に、④鋼管の上端から内部 に排水パイプを挿入し、⑤施工機により鋼管のみを引き 抜き、排水パイプを残置させる手順で行った。この施工 を 2019 年 3 月に行い、排水パイプは原地盤の粘土質砂 礫層 GL-9.21m まで到達させた。排水パイプは硬質塩化 ビニル管 (VP65)を使用し、深度 1.2m~9.2m までがス トレーナーとなっている。また、地表面の仕上げは水が 流入しないよう 0.3m の深度まで掘削し、砕石改良体頭 部に不織布を敷設した後、現場発生土を振動コンパクタ ーで締固めて埋戻した(写真-4(b))。

水位観測孔は,砕石改良体の上流側 b-1,下流側に,b-2を設置するとともに,排水パイプに水位計を設置し(b-3),水位観測を行った。なお,表-1に深度 3.0~3.5mの 盛土部分と深度 10.5~11.0mの原地盤砂層の現場透水試 験の結果を示す。

3. 計測結果および考察

3.1 case1

本地点では藤原ら[¬]が,2019年3月までの水位につい てまとめており,ここでは主にそれ以降について検討を 行う。図-6に試験施工前と2019年4月以降の各観測孔 の水位と時間降水量の関係を示す。なお,2021年5月~10 月はデータロガーの不具合のため,水位データが欠損し ている。

表-2 は、各年の6月11日~7月10日の降水量である。 また、図-7は表-2に示した期間における同時刻のa-1と a-2の水位を比較したものである。図-7より施工前はa-1 の水位上昇に連動して a-2の水位も上昇するが、施工後 は a-2の水位は上昇しない。また、施工から6年が経過 した現在でも、水位は孔底付近のGL-6.5mから上昇せず、 施工前より降水量が多い場合でも、水位の上昇は抑えら

図-6 case1 の各観測孔の水と時間降水量の関係(左:試験施工前,右:試験施工後)

表-2 各	·年の 6/11~7/	/10の降水量
試験施工	年	降水量(mm)
前	2015	172
	2016	327
後	2019	234
	2022	308

図-7 a-1 と a-2 の同時刻の水位の関係

写真-5 p-2 の排水状況 (左:2016.4.14, 右:2018.9.5)

表-3 p-4 の排水量				
市水青計測口	排水量計測日の	排水量		
扔F小里 計例 F	1日前の日雨量	(L/min)		
2016.4.14	10 mm (2016.4.13)	0.065		
2018.9.5	67 mm (2018.9.4)	0.132		
2021.11.2	0 mm (2021.11.1)	0.021		
2021.12.8	81 mm (2021.12.7)	0.136		
2022.3.9	0 mm (2022.3.8)	0.015		

れている。

排水パイプからの排水状況は、施工直後から p-2 以外 の3本で排水が確認でき、また p-5,6 の追加施工によっ て、p-2 の排水も確認できるようになった(写真-5)。ま た、降雨時にはすべての排水パイプから排水が確認でき ており、排水量は p-4 が最も多く、無降雨時でも常時排 水が確認されている。p-4 の排水量は、表-3 に示すよう に計測日の1日前に降雨がある場合は 0.065~0.136 L/min, 降雨がない場合では 0.015~0.021 L/min である。

3.2 case2

各観測孔の水位と時間降水量の関係を図-8に示す。ま た,図-9は施工前の2017年11月1日~12月31日と排 水パイプ施工後の2019年5月1日以降の同時刻のb-1と b-2, b-1 と b-3 の水位を比較したものである。図-9(a)よ り, GL-0~-2m までは施工前,施工後共に b-1 と b-2 は同 程度の水位上昇傾向を示すが,GL-2m以深では施工前に 比べて施工後の b-2 の水位上昇が b-1 の水位上昇に連動 しておらず, GL-6m 程度に抑えられ, b-2 は b-1 より水 位が低い。これは、降水量が少ない場合は、砕石改良体 の下位層への排水により b-2 の水位上昇が抑えられてい るが、降水量が多い場合には、下位層の透水係数が 10-5 cm/s と高くなく,また排水パイプが1本しかないため, 流入量に対して排水が追い付かず, b-2 の水位が上昇す る可能性が考えられる。また、降雨終了後は徐々に排水 が進み, b-2の水位が低下すると考えられる。また, 図-9(b)に示すように砕石改良体中の b-3 は b-1 より水位が 低い。

ここで,試験施工前後の b-1,2 の降雨後の水位上昇量 とその後の低下量から,排水効果の検討を行った。検討 区間の選定基準は,水位の変動が落ち着いている時期の 3 日間の合計降水量が 40~60mm 程度で,降雨後に上昇し た水位が最も高くなった時点から 96 時間において降雨 がない区間とした。なお,水位の上昇量は降雨直前の水 位から降雨後に最も高くなった水位の差とし,低下量は 水位が最も高くなった時点から 48 時間後と 96 時間後の 水位の差とした。図-10 に検討した施工前後の検討区間 の水位と降水量の関係の一例を示す。この結果より,施 工後の b-1,2 の水位低下量は施工前に比べて,大きくな っていることが分かる。また,表-4 に選定した検討区間 (試験施工前を 3 区間,施工後を 10 区間)における水位

図-9 同時刻の水位の関係

側 b-2 の水位低下量は、平均すると 48 時間後は施工前 0.16m から施工後 0.39m, 96 時間後は施工前 0.27m から 施工後 0.93m と大きくなっており、砕石改良体による排 水効果が確認できる。

表−4	各検討区間の	b-1,2の水上昇量と	:48時間後及び96	時間後の水位低下量
-----	--------	-------------	------------	-----------

試験	検討区間	合計降水量	水量 上昇量(m)		48 時間後低下量(m)		96 時間後低下量(m)	
施工		(mm)	b-1	b-2	b-1	b-2	b-1	b-2
前	2017.12.24 18:00~12.30 14:00	53	1.67	2.25	0.12	0.28	0.13	0.40
	2018.1.8 6:00~1.14 6:00	49	1.17	2.01	0.00	0.01	0.07	0.08
	2018.2.10 13:00~2.16 4:00	40	0.84	0.99	0.07	0.19	0.18	0.34
	平均值	47.3	1.23	1.75	0.06	0.16	0.13	0.27
後	2019.5.28 6:00~6.3 0:00	54	0.52	1.94	0.15	0.61	0.33	1.23
	2020.2.16 4:00~2.21 16:00	39	0.60	1.64	0.23	0.35	0.43	0.95
	2021.2.1 20:00~2.7 2:00	49	0.52	1.05	0.16	0.25	0.32	0.67
	2021.3.12 14:00~3.18 0:00	49	0.61	1.14	0.24	0.26	0.43	0.82
	2021.3.28 8:00~4.3 16:00	43	0.51	1.11	0.22	0.53	0.45	0.97
	2021.11.22 7:00~11.28 15:00	48	0.46	1.94	0.06	0.32	0.17	0.90
	2021.11.30 23:00~12.6 14:00	53	0.61	2.15	0.16	0.44	0.33	1.10
	2021.12.16 21:00~12.23 6:00	42	0.51	1.42	0.15	0.35	0.35	0.95
	2022.1.20 12:00~1.30 17:00	52	0.61	2.63	0.06	0.36	0.14	0.70
	2022.5.12 11:00~5.19 3:00	62	0.72	1.98	0.22	0.43	0.45	1.04
		48.7	0.57	1.70	0.16	0.39	0.34	0.93

4. まとめ

砕石改良体を連続的に施工した壁を盛土地盤内に構築 し、これに排水パイプを連結することで地盤内の地下水 を排除し、地下水位を低下させる工法について検討を行 った。

その結果,砕石改良体を壁状に構築した改良体の下端 に向けて盛土のり面から水抜きボーリング工を施工した case1の場合,排水パイプから確実に排水されるとともに, 砕石改良体近傍下流側の水位上昇が見られなくなった。 砕石改良体を鉛直に貫くように排水パイプを施工し,盛 土下位にある透水効果が考えられる原地盤へ鉛直方向に 排水する case2 の場合は,比較的透水係数が低い砂層で あっても水位低下効果が確認された。特に,降雨終了後 の下流側の水位は,上流側からの流入が遮断せれること で,急激に低下することが確認できた。以上, case1, case2 ともに本工法により盛土内に存在する地下水の確実な排 除に対し有効に機能することが確認された。

謝辞:実験に協力いただいた NEXCO 西日本本社の藤原 優氏,試験場所を提供していただいた㈱高速道路総合技 術研究所の緑化技術センターの方々に感謝致します。

参考文献

 藤岡一頼・横田聖哉・日下寛彦・広瀬剛 (2016):東 北地方太平洋沖地震における高速道路盛土の被害 分析,日本地震工学会論文集, Vol.16, No.1, pp.285-308.

- (2011):東名高速道路牧之原地区地震災害の 復旧とその後の対応、土木技術資料、Vol.53、No.3、 pp.38-41.
- 小野耕平・森伸一郎(2021):平成30年7月豪雨に よる愛媛県南西部の斜面崩壊に関する降雨特性の 分析,地盤工学ジャーナル, Vol.16, No.2, pp.105-115.
- 八木則男・矢田部龍一・山本浩司(1983):雨水浸透 による斜面崩壊,土木学会論文報告集,第 330 号, pp.107-114.
- 5) 長尾和之・澤野幸輝・松崎孝汰・風間基樹・河井正・ 加村晃良(2019):東北地方の豪雨による高速道路の り面災害事例とその特徴について,土木学会論文集 C(地圏工学), Vol.75, No.2, pp.198-215.
- 6) 安部哲生・藤岡一頼・新井寿和・三嶋信雄・濱田泰 冶・塚本将康(2015):砕石竪排水工の対策効果につ いて一その2一遠心力模型実験,第50回地盤工学会 研究発表, pp.1101-1102.
- 藤原優・酒井俊典・尾鍋哲也・大石新之介(2020): 土木学会論文集 C(地圏工学), Vol.76, No.1, pp.40-51.
- 8) 大石新之介・尾鍋哲也・濱口幸三・瀬間基広・酒井 俊典・藤原優・村上豊和(2020):砕石地盤改良体を 用いた盛土の鉛直排水効果の検証,第55回地盤工 学会研究発表,22-7-1-02.
- 酒井俊典・尾鍋哲也(2009):新型地盤改良機・エコジオの開発,三重大学社会連携センター研究報告17号, pp.147-151.

Appropriate drainage measures are necessary to improve the stability of embankments. Currently, horizontal drainage borings are mainly used as drainage measures for embankments. However, drainage measures using horizontal drainage borings may not be sufficiently effective if drainage pipes may not be placed appropriately along water channels. In this study, the method to drain groundwater in embankments by constructing a crushed-stone improvement wall body and connecting a drainage pipe to it was investigated. The small size ground improvement machine was used to construct the crushed stone improvement because it was difficult to use a large size machine on the embankment. Two methods of installing drainage pipes to drain water collected in the embankment in the crushed-stone improvement body were investigated. One is to install the drainage borings from the embankment slope toward the bottom of the crushed-stone improvement body, and the other is to install it vertically penetration from the top of embankment toward the sand or gravel layer under the crushed-stone improvement body. Longterm observations of water level changes in the embankment using water gauge showed that in the case of the drainage borings from the embankment slope toward the crushed-stone improvement body, the water drained out of the drainage pipes reliably and that the rise of the water level near the crushed-stone improvement body downstream side could be suppressed. And in the case of the drainage boring vertically toward the sand or gravel layer under the crushed-stone improvement body, it was also effective in suppressing the rise of the water level downstream side. These results confirmed that the drainage of groundwater in the embankment by this method was effective.